from scipy import stats
import numpy as np
# Calculating various statistics for the 'antigüedad' column
data = df['antigüedad']
mean = data.mean()
geometric_mean = stats.gmean(data)
mode = data.mode()[0]
median = data.median()
std_dev = data.std(ddof=1) # Sample standard deviation
variance = data.var(ddof=1) # Sample variance
quartiles = data.quantile([0.25, 0.5, 0.75])
percentile_33 = np.percentile(data, 33)
skewness = data.skew()
kurtosis = data.kurtosis()
minimum = data.min()
maximum = data.max()
range_ = maximum - minimum
iqr = quartiles[0.75] - quartiles[0.25] # Interquartile range
cv = std_dev / mean # Coefficient of variation
# Displaying the results
display({
'Mean': mean,
'Geometric Mean': geometric_mean,
'Mode': mode,
'Median': median,
'Sample Standard Deviation': std_dev,
'Sample Variance': variance,
'Quartile 1 (25%)': quartiles[0.25],
'Quartile 2 (50%) - Median': quartiles[0.5],
'Quartile 3 (75%)': quartiles[0.75],
'Percentile 33': percentile_33,
'Skewness - Coefficient of Asymmetry': skewness,
'Kurtosis - Coefficient of Curtosis': kurtosis,
'Minimum': minimum,