Vizly: AI-powered data analysis

Try for yourself

Exploring Statistics of 'antigüedad' Column in Retail Data

sacame la media aritmetica, geométrica, moda, mediana, desviación tipica muestral, varianza muestral, cuartil 1,2,3, percentil 33, coeficiente de asimetrica, coeficiente de curtosis, minimo, maximo, rango, amplictud intercuartil y coeficiente de variazión de la columna antiguedad

Summary of Statistical Analysis for 'antigüedad' Column

  • Mean (Average): 85.16
  • Geometric Mean: 51.95
  • Mode (Most Frequent): 6
  • Median (Middle Value): 65.0
  • Sample Standard Deviation: 72.77
  • Sample Variance: 5295.89
  • Quartile 1 (25%): 20.0
  • Quartile 2 (Median): 65.0
  • Quartile 3 (75%): 140.0
  • Percentile 33: 34.88
  • Skewness (Asymmetry Coefficient): 0.83
  • Kurtosis (Curtosis Coefficient): -0.21
  • Minimum: 6
  • Maximum: 248
  • Range: 242
  • Interquartile Range (IQR): 120.0
  • Coefficient of Variation (CV): 0.85

de la hoja cálculos sacame la media, mediana, moda, desviación tipica muestral, varianza muestral, curtosis, asimetria, máximo, minimo, rango, percentil 25, amplictud intercuartil y coeficiente de variación de la columna empleados, antiguedad, facturación, impuestos y costes

Statistical Analysis Summary for Selected Columns

empleados

  • Mean: 2.68
  • Median: 3.0
  • Mode: 2.0
  • Sample Standard Deviation: 0.80
  • Sample Variance: 0.64
  • Kurtosis: -0.52
  • Skewness: 0.14
  • Maximum: 4.0
  • Minimum: 1.0
  • Range: 3.0
  • Percentile 25: 2.0
  • Interquartile Range (IQR): 1.0
  • Coefficient of Variation (CV): 0.30

antigüedad

  • Mean: 85.16
  • Median: 65.0
  • Mode: 6.0
  • Sample Standard Deviation: 72.77
  • Sample Variance: 5295.89
  • Kurtosis: -0.21
  • Skewness: 0.83
  • Maximum: 248.0
  • Minimum: 6.0
  • Range: 242.0
  • Percentile 25: 20.0
  • Interquartile Range (IQR): 120.0
  • Coefficient of Variation (CV): 0.85

facturación

  • Mean: 7589.26
  • Median: 7628.49
  • Mode: 5189.92
  • Sample Standard Deviation: 2474.33
  • Sample Variance: 6121285.32
  • Kurtosis: 0.49
  • Skewness: -0.11
  • Maximum: 10126.84
  • Minimum: 2032.89
  • Range: 8093.95
  • Percentile 25: 6323.34
  • Interquartile Range (IQR): 1305.15
  • Coefficient of Variation (CV): 0.33

impuestos

  • Mean: 1447.06
  • Median: 1473.22
  • Mode: 605.07
  • Sample Standard Deviation: 376.84
  • Sample Variance: 141998.96
  • Kurtosis: 1.98
  • Skewness: 0.67
  • Maximum: 1951.41
  • Minimum: 605.07
  • Range: 1346.34
  • Percentile 25: 1186.55
  • Interquartile Range (IQR): 286.66
  • Coefficient of Variation (CV): 0.26

costes

  • Mean: 1167.27
  • Median: 1188.82
  • Mode: 760.57
  • Sample Standard Deviation: 222.53
  • Sample Variance: 49519.14
  • Kurtosis: 4.22
  • Skewness: 1.33
  • Maximum: 1884.72
  • Minimum: 760.57
  • Range: 1124.15
  • Percentile 25: 1025.7
  • Interquartile Range (IQR): 204.27
  • Coefficient of Variation (CV): 0.19

de la hoja calulos, sacame un historiograma teniendo en cuenta las clases de facturación y su frecuencia

Histogram of Facturación

A histogram was created to visualize the distribution of the 'facturación' column from the 'Cálculos' sheet. The histogram, plotted using Plotly Express with a dark theme, shows the frequency of different facturación classes across the dataset. The data was divided into 10 bins to provide a clear overview of the distribution pattern.

Vizly

AI-powered data analysis

Try for yourself