Dec 12, 2024, 8:15 AM
Ayoosu (PBE183023) -PhD -UTM-Viva PDF slides.pdf
Missing file
Ayoosu (PBE183023) -PhD -UTM-Viva PDF slides.pptx
Missing file
Picture 1.png
Missing file
Criteria | Metric | Indicator |
---|---|---|
Visual Comfort | User surveys, visual comfort assessments | Percentage of occupants reporting satisfaction with daylight levels |
Glare Control | User surveys, glare index | Percentage of occupants reporting no discomfort due to glare |
Aesthetic Quality | User surveys, architectural reviews | Percentage of occupants satisfied with the aesthetic quality of daylight |
Psychological Well-being | User surveys, psychological assessments | Percentage of occupants reporting positive mood and reduced stress levels |
Illuminance Levels | Lux (lx) | Average daylight illuminance levels within the range of 300-500 lux |
Daylight Autonomy (DA) | Percentage of occupied hours | Percentage of time a space meets the target illuminance level using daylight alone (e.g., DA300lx,50% means 50% of occupied hours have at least 300 lux) |
Useful Daylight Illuminance (UDI) | Percentage of occupied hours | Percentage of time daylight levels are within a useful range (e.g., 100-2000 lux) |
Glare Index (Daylight Glare Probability - DGP) | DGP value | DGP value below 0.35 (indicating low probability of glare) |
Solar Heat Gain | Watts per square meter (W/m²) | Solar heat gain coefficient (SHGC) values within acceptable limits to reduce cooling loads |
Energy Savings | Kilowatt-hours (kWh) | Reduction in artificial lighting energy consumption due to effective daylighting |
Picture 1 copy.png
Missing file
Identifying Objectives for High-Rise Office Buildings | Selecting Daylight Metrics for Simulation Analysis | Assigning Performance Criteria | Generating New IWFD and Variables | Optimising Parameters According to Performance Criteria |
---|---|---|---|---|
- Improving visual comfort | - Illuminance levels (lux) | - Illuminance levels: 300-500 lux | - Selecting louver types and materials | - Genetic algorithm |
- Reducing glare | - Daylight autonomy (DA) | - DA: >50% of occupied hours | - Configuring manual adjustable system | - Exhaustive search |
- Enhancing aesthetic quality | - Useful daylight illuminance (UDI) | - UDI: 100-2000 lux | - Systematic configuration | |
- Promoting psychological well-being | - Glare index (DGP) | - DGP: <0.35 | ||
- Solar heat gain (W/m²) | - SHGC: within acceptable limits | |||
- Energy savings (kWh) | - Reduction in artificial lighting | |||
energy consumption | ||||
----------------------------------------------------------- | -------------------------------------------------------- | ------------------------------------ | ---------------------------------------- | ------------------------------------------------------------- |
Meeting requirements for visual comfort | Modified spatial contrast | Visual comfort | Adding systematic configuration | Optimised design |
Providing a sense of well-being (Visual interest) |
Identifying Objectives for High-Rise Office Buildings | Selecting Daylight Metrics for Simulation Analysis | Assigning Performance Criteria | Generating New IWFD and Variables | Optimising Parameters According to Performance Criteria |
---|---|---|---|---|
- Improving visual comfort | - Illuminance levels (lux) | - Illuminance levels: 300-500 lux | - Selecting louver types and materials | - Genetic algorithm |
- Reducing glare | - Daylight autonomy (DA) | - DA: >50% of occupied hours | - Configuring manual adjustable system | - Exhaustive search |
- Enhancing aesthetic quality | - Useful daylight illuminance (UDI) | - UDI: 100-2000 lux | - Systematic configuration | |
- Promoting psychological well-being | - Glare index (DGP) | - DGP: <0.35 | ||
- Solar heat gain (W/m²) | - SHGC: within acceptable limits | |||
- Energy savings (kWh) | - Reduction in artificial lighting | |||
energy consumption | ||||
----------------------------------------------------------- | -------------------------------------------------------- | ------------------------------------ | ---------------------------------------- | ------------------------------------------------------------- |
Meeting requirements for visual comfort | Modified spatial contrast | Visual comfort | Adding systematic configuration | Optimised design |
Providing a sense of well-being (Visual interest) |
Identifying Objectives for High-Rise Office Buildings | Selecting Daylight Metrics for Simulation Analysis | Assigning Performance Criteria | Generating New IWFD and Variables | Optimising Parameters According to Performance Criteria |
---|---|---|---|---|
- Improving visual comfort | - Illuminance levels (lux) | - Illuminance levels: 300-500 lux | - Selecting louver types and materials | - Genetic algorithm |
- Reducing glare | - Daylight autonomy (DA) | - DA: >50% of occupied hours | - Configuring manual adjustable system | - Exhaustive search |
- Enhancing aesthetic quality | - Useful daylight illuminance (UDI) | - UDI: 100-2000 lux | - Systematic configuration | |
- Promoting psychological well-being | - Glare index (DGP) | - DGP: <0.35 | ||
- Solar heat gain (W/m²) | - SHGC: within acceptable limits | |||
- Energy savings (kWh) | - Reduction in artificial lighting | |||
energy consumption | ||||
----------------------------------------------------------- | -------------------------------------------------------- | ------------------------------------ | ---------------------------------------- | ------------------------------------------------------------- |
Meeting requirements for visual comfort | Modified spatial contrast | Visual comfort | Adding systematic configuration | Optimised design |
Providing a sense of well-being (Visual interest) |
Year | Study Reference | Type of Shading Device | Type of Light Mode | Method Used | Performance (Daylight Metric) |
---|---|---|---|---|---|
2013 | Author et al., 2013 | External Louvers | Natural Light | Simulation | 50% Daylight Autonomy |
2014 | Author et al., 2014 | Internal Blinds | Artificial Light | Field Study | 60% Daylight Factor |
2015 | Author et al., 2015 | Dynamic Facades | Mixed Mode | Experimental | 70% Useful Daylight Illuminance |
2016 | Author et al., 2016 | Fixed Overhangs | Natural Light | Simulation | 55% Daylight Autonomy |
2017 | Author et al., 2017 | Automated Shades | Artificial Light | Field Study | 65% Daylight Factor |
2018 | Author et al., 2018 | External Louvers | Mixed Mode | Experimental | 75% Useful Daylight Illuminance |
2019 | Author et al., 2019 | Internal Blinds | Natural Light | Simulation | 60% Daylight Autonomy |
2020 | Author et al., 2020 | Dynamic Facades | Artificial Light | Field Study | 70% Daylight Factor |
2021 | Author et al., 2021 | Fixed Overhangs | Mixed Mode | Experimental | 80% Useful Daylight Illuminance |
2022 | Author et al., 2022 | Automated Shades | Natural Light | Simulation | 65% Daylight Autonomy |
2023 | Author et al., 2023 | External Louvers | Artificial Light | Field Study | 75% Daylight Factor |
Year | Study Reference | Type of Shading Device | Type of Light Mode | Method Used | Performance (Daylight Metric) |
---|---|---|---|---|---|
2013 | Author et al., 2013 | External Louvers | Natural Light | Simulation | 50% Daylight Autonomy |
2014 | Author et al., 2014 | Internal Blinds | Artificial Light | Field Study | 60% Daylight Factor |
2015 | Author et al., 2015 | Dynamic Facades | Mixed Mode | Experimental | 70% Useful Daylight Illuminance |
2016 | Author et al., 2016 | Fixed Overhangs | Natural Light | Simulation | 55% Daylight Autonomy |
2017 | Author et al., 2017 | Automated Shades | Artificial Light | Field Study | 65% Daylight Factor |
2018 | Author et al., 2018 | External Louvers | Mixed Mode | Experimental | 75% Useful Daylight Illuminance |
2019 | Author et al., 2019 | Internal Blinds | Natural Light | Simulation | 60% Daylight Autonomy |
2020 | Author et al., 2020 | Dynamic Facades | Artificial Light | Field Study | 70% Daylight Factor |
2021 | Author et al., 2021 | Fixed Overhangs | Mixed Mode | Experimental | 80% Useful Daylight Illuminance |
2022 | Author et al., 2022 | Automated Shades | Natural Light | Simulation | 65% Daylight Autonomy |
2023 | Author et al., 2023 | External Louvers | Artificial Light | Field Study | 75% Daylight Factor |
Year | Study Reference | Type of Shading Device | Type of Light Mode | Method Used | Performance (Daylight Metric) |
---|---|---|---|---|---|
2020 | Albert Al Touma, Djamel Ouahrani, 2020 | Automated Shades | Natural Light | Simulation | 65% Daylight Autonomy |
Task | Start Date | End Date | Duration (Months) |
---|---|---|---|
Literature Review | Oct 2023 | Mar 2024 | 6 |
Design and Simulation | Apr 2024 | Sep 2024 | 6 |
Field Studies | Oct 2024 | Mar 2025 | 6 |
Data Analysis | Apr 2025 | Sep 2025 | 6 |
Writing and Compilation | Oct 2025 | Mar 2026 | 6 |
Final Review and Submission | Apr 2026 | Jun 2026 | 3 |
!pip install -U kaleido
fig.show()
without the renderer='png'
option, which will display the interactive Plotly chart directly in the notebook.